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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. In particular, solutions found from a graphic display
calculator should be supported by suitable working. For example, if graphs are used to find a solution,
you should sketch these as part of your answer. Where an answer is incorrect, some marks may be
given for a correct method, provided this is shown by written working. You are therefore advised to show

all working.

Section A
Answer all questions in the boxes provided. Working may be continued below the lines, if necessary.
1. [Maximum mark: 5]

A random variable X has a probability distribution given in the following table.

X 0.5 1.5 2.5 35 4.5 5.5

P(X=x) 0.12 0.18 0.20 0.28 0.14 0.08
(a) Determine the value of E(X?). 2]
(b) Find the value of Var(X). [3]

§ [N |
16EP02




2.

-3- N16/5/MATHL/HP2/ENG/TZ0/XX

[Maximum mark: 5]

Find the acute angle between the planes with equations x +y +z=3 and 2x —z=2.
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[Maximum mark: 6]

A discrete random variable X follows a Poisson distribution Po(y).

(@) Showthat P(X = x + 1) = ’ule(X:x),xeN. 3]
X +

(b) Giventhat P(X=2)=0.241667 and P(X=3)=0.112777, use part (a) to find the value
of u. [3]
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[Maximum mark: 5]

12
3
Find the constant term in the expansion of (4x2 - —j .
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[Maximum mark: 9]

Consider the function f* defined by f'(x) = 3x arccos(x) where —1 <x<1.

(a) Sketch the graph of f indicating clearly any intercepts with the axes and the

coordinates of any local maximum or minimum points. [3]
(b) State the range of f. [2]
(c) Solve the inequality |3x arccos(x)| > 1. [4]
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[Maximum mark: 6]

An earth satellite moves in a path that can be described by the curve 72.5x°+ 71.5)°= 1
where x = x(¢) and y = y(¢) are in thousands of kilometres and ¢ is time in seconds.

Given that % =7.75% 10" when x=3.2 x 107, find the possible values of %

Give your answers in standard form.
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[Maximum mark: 8]

In a triangle ABC, AB =4cm, BC =3cm and BAC =

Qo |3

(@) Use the cosine rule to find the two possible values for AC.

(b) Find the difference between the areas of the two possible triangles ABC.
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[Maximum mark: 8]

A random variable X is normally distributed with mean u and standard deviation o,
such that P(X'<30.31) =0.1180 and P(X > 42.52) =0.3060.

(@) Find g and o. [6]

(b) Find P(.X - 4 < 1.20). 2]
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[Maximum mark: 8]

The diagram shows two circles with centres at the points A and B and radii 2 and r,
respectively. The point B lies on the circle with centre A. The circles intersect at the
points C and D.

Let o be the measure of the angle CAD and 6 be the measure of the angle CBD in
radians.

(@) Find an expression for the shaded area in terms of «, 6§ and r. [3]
1

(b) Show that o = 4arcst. [2]

(c) Hence find the value of » given that the shaded area is equal to 4. [3]
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Answer all questions in the answer booklet provided. Please start each question on a new page.
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Do not write solutions on this page.

Section B

10. [Maximum mark: 22]

Let the function f be defined by f(x) =

(@)
(b)

(c)

(d)

(e)
(f)

X

2—¢
2¢" -1

,xeD.

Determine D, the largest possible domain of f.

Show that the graph of f has three asymptotes and state their equations.

3e”

Show that f'(x) = ———.
(2¢°-1)

Use your answers from parts (b) and (c) to justify that /" has an inverse and state its
domain.

Find an expression for f~'(x).

Consider the region R enclosed by the graph of y = f(x) and the axes.

Find the volume of the solid obtained when R is rotated through 2n about the y-axis.
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Do not write solutions on this page.

11.

L

[Maximum mark: 20]

A Chocolate Shop advertises free gifts to customers that collect three vouchers.

The vouchers are placed at random into 10 % of all chocolate bars sold at this shop.

Kati buys some of these bars and she opens them one at a time to see if they contain a
voucher. Let P(X = n) be the probability that Kati obtains her third voucher on the nth bar
opened.

(It is assumed that the probability that a chocolate bar contains a voucher stays at 10%
throughout the question.)

(@) Show that P(X=3)=0.001 and P(X=4)=0.0027. [3]
n+an+b
Itis given that P(X =n) = ———— x 09" forn>3,neN.
2000
(b) Find the values of the constants a and b. [5]

PX=n)  09(n-1)
P(X:n—l)_ n-3

(c) Deduce that for n>3. [4]

(d) (i) Hence show that X has two modes m, and m,.
(i)  State the values of m, and m,. [5]

Kati’'s mother goes to the shop and buys x chocolate bars. She takes the bars home for Kati
to open.

(e) Determine the minimum value of x such that the probability Kati receives at least one
free gift is greater than 0.5. [3]
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Do not write solutions on this page.
12. [Maximum mark: 18]

On the day of her birth, 1st January 1998, Mary’s grandparents invested $x in a savings
account. They continued to deposit $x on the first day of each month thereafter.

The account paid a fixed rate of 0.4% interest per month. The interest was calculated on
the last day of each month and added to the account.

Let $4, be the amount in Mary’s account on the last day of the nth month, immediately after
the interest had been added.

(a) Find an expression for 4, and show that 4,= 1.004%x + 1.004x.. [2]
(b) (i)  Write down a similar expression for 4, and 4,.

(i)  Hence show that the amount in Mary’s account the day before she turned
10 years old is given by 251(1.004'*°— 1)x. [6]

(c) Write down an expression for 4, in terms of x on the day before Mary turned 18 years
old showing clearly the value of n. 1

(d) Mary’s grandparents wished for the amount in her account to be at least $20000 the
day before she was 18. Determine the minimum value of the monthly deposit $x
required to achieve this. Give your answer correct to the nearest dollar. [4]

(e) Assoon as Mary was 18 she decided to invest $15000 of this money in an account of
the same type earning 0.4% interest per month. She withdraws $1000 every year on
her birthday to buy herself a present. Determine how long it will take until there is no
money in the account. [5]
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